The role of magnetic helicity transport in nonlinear galactic dynamos

نویسندگان

  • N. Kleeorin
  • D. Sokoloff
چکیده

We consider the magnetic helicity balance for the galactic dynamo in the framework of the local dynamo problem, as well as in the no-z model (which includes explicitly the radial distribution of the magnetic fields). When calculating the magnetic helicity balance we take into account the redistribution of the small-scale and large-scale magnetic fields between the magnetic helicities, as well as magnetic helicity transport and diffusion due to smallscale turbulence. We demonstrate that the magnetic helicity flux through the galactic disc boundaries leads to a steady-state magnetic field with magnetic energy comparable to the equipartition energy of the turbulent motions of the interstellar medium. If such flux is ignored, the steady-state magnetic field is found to be much smaller than the equipartition field. The total magnetic helicity flux through the boundaries consists of both an advective flux and a diffusive flux. The exact ratio of these contributions seems not to be crucial for determining the strength of the steady-state magnetic field and its structure. However at least some diffusive contribution is needed to smooth the magnetic helicity profile near to the disc boundaries. The roles of various transport coefficients for magnetic helicity are investigated, and the values which lead to magnetic field configurations comparable with those observed are determined.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Simulations of Galactic Dynamos

We review our current understanding of galactic dynamo theory, paying particular attention to numerical simulations both of the mean-field equations and the original three-dimensional equations relevant to describing the magnetic field evolution for a turbulent flow. We emphasize the theoretical difficulties in explaining non-axisymmetric magnetic fields in galaxies and discuss the observationa...

متن کامل

Galactic dynamo and helicity losses through fountain flow

Aims. Nonlinear behaviour of galactic dynamos is studied, allowing for magnetic helicity removal by the galactic fountain flow. Methods. A suitable advection speed is estimated, and a one-dimensional mean-field dynamo model with dynamic α-effect is explored. Results. It is shown that the galactic fountain flow is efficient in removing magnetic helicity from galactic discs. This alleviates the c...

متن کامل

Nonlinear current helicity fluxes in turbulent dynamos and alpha quenching.

Large scale dynamos produce small scale current helicity as a waste product that quenches the large scale dynamo process (alpha effect). This quenching can be catastrophic (i.e., intensify with magnetic Reynolds number) unless one has fluxes of small scale magnetic (or current) helicity out of the system. We derive the form of helicity fluxes in turbulent dynamos, taking also into account the n...

متن کامل

Advances in Theory and Simulations of Large-Scale Dynamos

Recent analytical and computational advances in the theory of large-scale dynamos are reviewed. The importance of the magnetic helicity constraint is apparent even without invoking mean-field theory. The tau approximation yields expressions that show how the magnetic helicity gets incorporated into mean-field theory. The test-field method allows an accurate numerical determination of turbulent ...

متن کامل

Magnetic helicity in galactic dynamos

Magnetic fields correlated on kiloparsec scales are seen in spiral galaxies. Their origin could be due to amplification of a small seed field by a turbulent galactic dynamo. We review the current status of the galactic dynamo, especially the constraints imposed by magnetic helicity conservation. We estimate the minimal strength of the large-scale magnetic field which could arise inspite of the ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2002